skip to main content


Search for: All records

Creators/Authors contains: "McCaslin, Laura M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. We report how the binary HNO 3 (H 2 O) interaction is modified upon complexation with a nearby Cs + ion. Isomer-selective IR photodissociation spectra of the D 2 -tagged, ternary Cs + (HNO 3 )H 2 O cation confirms that two structural isomers are generated in the cryogenic ion source. In one of these, both HNO 3 and H 2 O are directly coordinated to the ion, while in the other, the water molecule is attached to the OH group of the acid, which in turn binds to Cs + with its –NO 2 group. The acidic OH stretching fundamental in the latter isomer displays a ∼300 cm −1 red-shift relative to that in the neutral H-bonded van der Waals complex, HNO 3 (H 2 O). This behavior is analyzed with the aid of electronic structure calculations and discussed in the context of the increased effective acidity of HNO 3 in the presence of the cation. 
    more » « less
  3. Acetaldehyde cations (CH 3 CHO + ) were prepared using single-photon vacuum ultraviolet ionization of CH 3 CHO in a molecular beam and the fragmentation dynamics explored over the photolysis wavelength range 390–210 nm using velocity-map ion imaging and photofragment yield (PHOFY) spectroscopy. Four fragmentation channels are characterized: CH 3 CHO + → C 2 H 3 O + + H (I), CH 3 CHO + → HCO + + CH 3 (II), CH 3 CHO + → CH 3 + + HCO (III), CH 3 CHO + → CH 4 + + CO (IV). Channels (I), (II), and (IV) are observed across the full photolysis wavelength range while channel (III) is observed only at λ < 317 nm. Maximum fragment ion yields are obtained at ∼250 nm. Ion images were recorded over the range 316–228 nm, which corresponds to initial excitation to the B̃ 2 A′ and C̃ 2 A′ states of CH 3 CHO + . The speed and angular distributions are distinctly different for each detected ion and show evidence of both statistical and dynamical fragmentation pathways. At longer wavelengths, fragmentation via channel (I) leads to modest translational energies ( E T ), consistent with dissociation over a small barrier and production of highly internally excited CH 3 CO + . Additional components with E INT greater than the CH 3 CO + secondary dissociation threshold appear at shorter wavelengths and are assigned to fragmentation products of vinyl alcohol cation or oxirane cation formed by isomerization of energized CH 3 CHO + . The E T distribution observed for channel (III) products peaks at zero but is notably colder than that predicted by phase space theory, particularly at longer photolysis wavelengths. The colder-than-statistical E T distributions are attributed to contributions from secondary fragmentation of energized CH 3 CO + formed via channel (I), which are attenuated by CH 3 CHO + isomerization at shorter wavelengths. Fragmentation via channels (II) and (IV) results in qualitatively similar outcomes, with evidence of isotropic statistical components at low- E T and anisotropic components due to excited state dynamics at higher E T . 
    more » « less
  4. S N 2-type halide substitution and hydrolysis are two of the most ubiquitous reactions in chemistry. The interplay between these processes is fundamental in atmospheric chemistry through reactions of N 2 O 5 and seawater. N 2 O 5 plays a major role in regulating levels of O 3 , OH, NO x , and CH 4 . While the reactions of N 2 O 5 and seawater are of central importance, little is known about their mechanisms. Of interest is the activation of Cl in seawater by the formation of gaseous ClNO 2 , which occurs despite the fact that hydrolysis (to HNO 3 ) is energetically more favorable. We determine key features of the reaction landscape that account for this behavior in a theoretical study of the cluster N 2 O 5 /Cl − /H 2 O. This was carried out using ab initio molecular dynamics to determine reaction pathways, structures, and time scales. While hydrolysis of N 2 O 5 occurs in the absence of Cl − , results here reveal that a low-lying pathway featuring halide substitution intermediates enhances hydrolysis. 
    more » « less